Formula/Conversion Table for Water Treatment Plant and Water Distribution Systems

1 foot = 12 inches	1 MGD = 1.55 cfs	1 grain / gal = 17.1 mg/L	1 minute = 60 seconds	
1 yard = 3 feet	1 cu. yd. = 27 cu. ft.	1 gram = 1,000 mg	1 hour = 60 minutes	
1 meter = 3.28 feet	1 cu. ft. = 7.48 gal	1 kg = 1,000 gram	1 day = 1,440 min	
1 mile = 5,280 feet	1 gal = 8.34 lbs	1 liter = 1,000 ml	1% = 10,000 mg/L	
1 sq. ft. = 144 sq. in.	1 cu. ft. = 62.4 lbs	1 gal = 3.785 liters	1 mg/l = 1 ppm	
1 acre = 43,560 sq. ft.	1 kg = 2.2 lbs	1 psi = 2.31 ft. of water head	1 hp= 0.746 kW	
1 acre-ft. = 43,560 cu. ft.	1 lb. = 454 g	1 ft. of water head = 0.433 psi	1 hp = 33,000 ft. lbs/min	
1 acre-ft. = 325,829 gallons			1kW = 1,000 Watts	
egend: L = length W = v	width H = height	R = radius D = diameter	π = 3.14 g = gra	

Alkalinity Concepts

Phenolphthalein Alkalinity, mg/L as CaCO₃ =

(Titrant Volume A, ml) (Acid Normality) (50,000) Sample Volume, ml

Total Alkalinity, mg/L as CaCO₃ =

(Titrant Volume B, ml) (Acid Normality) (50,000) Sample Volume, ml

Alkalinity Relationships: Alkalinity, mg/l as CaCO ₃				
Result of	Bicarbonate	Carbonate	Hydroxide	
Titration	Alkalinity as	Alkalinity as Alkalinity as		
	CaCO ₃	CaCO₃	CaCO ₃	
P = 0	Т	0	0	
P < ½ T	T – 2P	2P	0	
P = ½ T	0	2P	0	
P > ½ T	0	2(T – P)	2P – T	
P = T	0	0	Т	

Key: P – phenolphthalein alkalinity; T – total alkalinity

Area, Circumference and Volume

<u>Area, square feet (ft²)</u>

Circle: A = $3.14 \times R^2$ or A = $0.785 \times D^2$

Cylinder, (total outer surface area): $A = (2 \times 3.14 \times R^2) + 3.14 \times D \times H$ or $A = (2 \times 0.785 \times D^2) + (3.14 \times D \times H)$ Cylinder (pipe): $A = 3.14 \times D \times L$ Square or Rectangle: $A = L \times W$

Circumference (Perimeter), linear feet

Circle = $3.14 \times D$ Rectangle = $(2 \times L) + (2 \times W)$

Volume, cubic feet (ft³):

Cylinder: $V = 3.14 \times R^2 \times H$ or $V = 0.785 \times D^2 \times H$ Rectangle: $V = L \times W \times H$

	Sum of All Terms or Measurements		
Average (arithmetic mean) =	Number of Terms or Measurements		
	Sum of All Averages		
Annual Running Average =	Number of Averages		

Chemical Feed, Mixing and Solution Strengths

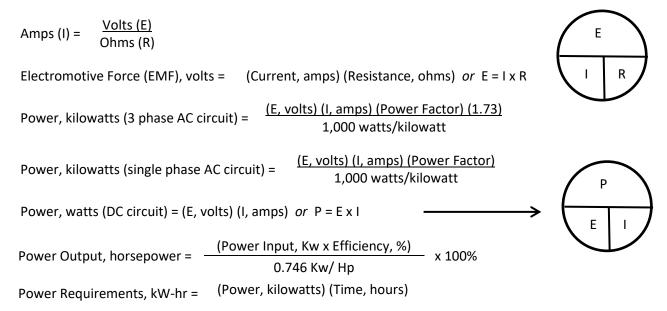
Chemical Feed, lbs/day = <u>(Dry Chemical, g) (60 min/hr.) (24 hr./day)</u> (Dry Chemical Feeder) (454 g/lb.) (Time, min)				
Chemical Feed, lbs/day =(Polymer Conc., mg/l) (Volume Pumped, ml) (60 min/hr.) (24 hr./day)(Polymer Feeder)(Time Pumped, min) (1,000 mg/l) (1,000 mg/gm) (454 gm/lb.)				
Chemical feed pump setting, % stroke =				
Chemical Feed Pump Setting, mL/minute = (Liquid alum, mg/ml) (1,440 min/day)				
Chemical Flow, gpm = Volume Pumped, gal (Pumping Time, hr) (60 min/hr)				
Feeder setting, % =Desired feed rate, lbs./day Maximum feed rate, lbs./dayx 100%orDesired flow, gpd Maximum flow, gpdx 100%				
Hypochlorite Strength, % = (Hypochlorite solution needed, gal/day) (8.34 lbs./gal) x 100%				
Lbs. of Chemical = (amount of solution needed, gal) (solution strength, as a decimal) (8.34 lbs/gal)				
Liquid Polymer, gal = Supplied Liquid Polymer, %				
Mixture Strength, % = (Amount 1, gals) (Strength 1, %) + (Amount 2, gals) (strength 2, %) (Amount 1, gals) + (Amount 2, gals)				
Polymer Solution, % = (Dry Polymer, lbs) (100%) (Dry Polymer, lbs + Water, lbs)				
Water added for hypochlorite sol'n, gal = (hypo, gal) (hypo,%) – (hypo, gal) (desired hypo,%) Desired hypo, %				
Potassium Permanganate Dose, mg/L = (0.2 x Iron content, mg/L) + (2.0 x Manganese content, mg/L)				

Demineralization

Membrane Area, sq ft = (Number of Vessels) (Number of Elements per Vessel) (Surface Area per Element)

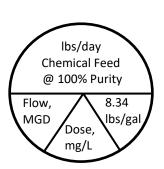
Mineral Rejection, % =
$$(1 - \frac{\text{Product TDS Concentration, mg/L}}{\text{Feedwater TDS Concentration, mg/L}}) \times 100\%$$

Recovery, % = <u>Product Flow, MGD</u> x 100%


Detention Time

Detention Time, days =Tank Volume, gallons
Flow Rate, gal/dayNote: for detention time in hours, multiply by 24 hrs/day
For detention time in minutes, multiply by 1,440 min/day

Disinfection


Chlorine Demand, mg/L = Chlorine Dosage, mg/L – Chlorine Residual, mg/L Chlorine Dosage, mg/L = Chlorine Demand, mg/L + Chlorine Residual, mg/L Chlorine Residual, mg/L = Chlorine Dosage, mg/L – Chlorine Demand, mg/L CT calculation, time = (Disinfectant Residual Concentration, mg/L) (Time) *Time units must be compatible*

<u>Electrical</u>

Feed Rate, 100% chlorine

Feed Rate, lbs/day = (Dosage, mg/L) (Flow, MGD) (8.34 lbs/gal)

Using the Davidson Pie Chart

- To find the quantity above the horizontal line: Multiply the 3 pie wedges below the line together. Next, divide by the % purity as a decimal (i.e., 65% = 0.65).
- <u>To solve for one of the pie wedges below the horizontal line</u>: Divide the 2 bottom pie wedges into the quantity of lbs above the horizontal line. Next, multiply by the % purity as a decimal (i.e., 65% = 0.65).
- The given units must match the units shown in the pie wheel.
- Dose = mg/L or PPM

Calcium Hypochlorite (CaOCI), lbs. =
$$\frac{Pure chlorine required, lbs/day}{CaOCI % Purity, as decimal} \times 100\%$$
Sodium Hypochlorite (NaOCI), gals. =
$$\frac{Pure chlorine required, lbs/day}{(NaOCI % purity as decimal) (8.34 lbs/gal)} \times 100\%$$
Filtration
Backwash Rise Rate, inches/min =
$$\frac{(Backwash Rate, gpm/sq. ft.) (12 in/ft)}{7.48 gal/cu. ft.}$$
Backwash Pumping Rate, gal/min = (Backwash Rate, gpm/sq. ft.) (Filter Surface Area, sq. ft.)
Backwash Water Required, gal = (Backwash Flow, gpm) (Backwash Time, min)
Backwash Water Used, % =
$$\frac{Backwash Water, gal}{Water Filtered, gal} \times 100\%$$
Filtration Rate or Backwash Rate, gpm/sq ft =
$$\frac{Flow Rate, gpm}{Filter Surface Area, sq ft}$$
Hydraulic or Surface Loading Rate, gpd/sq ft =
$$\frac{Total Flow Applied, gpd}{Surface Area, sq ft}$$

Unit Filter Run Volume, gal/sq ft = (Filtration Rate, gpm/sq. ft.) (Filter Run, hr) (60 min/hr)

Flow Rates and Velocity (pipeline, channel or stream)

Flow Rate, cfs = (Area, sq. ft.) (Velocity, ft/sec) or Q = V x A Q V A Where: Q = flow rate, cfs V = velocity, fps A = area, ft²

Flow Rate, gpm = (Area, sq. ft.) (Velocity, ft/sec) (7.48 gal/cu ft) (60 sec/min) or Q = V x A x 7.48 x 60

Velocity, fps =		Rate, cfs , sq ft	or	Distance, ft Time, seconds	
<u>Fluoridation</u>					
Food Rate lbs/day		(Dos	age, mg/L) (Flow, MGD)	(8.34 lbs/gal)	
Feed Rate, lbs/day =		(Fluoride Sol'n, as a decimal) (Fluoride Purity, as a decimal)			
Feed Rate, gpd =		Feed Ra	te, lbs/	′day	
	Cł	Chemical Solution, lbs/gal			
Feed Rate, lbs/day =			Fluc	oride, lbs/day	
		Fluoride, lbs/lb of commercial chemical			

Flue is the second				
Fluoride Ion Purity, % = Molecular Weight of Compound x 100%				
Flushing Time				
Flushing Time, sec =Volume, cu ft Flow, cfsor(Length of Pipeline, ft) (Number of Flushing Volumes)Velocity, ft/sec				
Laboratory				
Dilute to ml = (Actual Weight, gm) (1,000 ml) Desired Weight, gm				
Langelier Saturation Index (L.S.I.) = $pH - pH_s$				
Leakage and Pressure Testing Pipelines				
Leakage, gpd = <u>Volume, gal</u> Time, days				
Asbestos Cement (AC) or Ductile Iron (DI) Pipe, gpd/mi-in =				
(length, miles) (Diameter, in)				
Plastic Pipe Leakage, gph/100 joints = Leak Rate, gph				
(Number of Joints ÷ 100)				
Test Pressure, psi = Normal Pressure + 50% or 150 psi, whichever is greater				
Loading				
Weir Overflow Rate, gpd/ft = Total Flow, gpd				
Length of Weir, ft				
<u>Parts per million (PPM) or milligrams per liter, (mg/L)</u>				
Dosage, PPM or mg/L = (Water Volume, MG) (8.34 lbs/gal)				
Pressure and Head				
Head (Height of Water), ft = (Pressure, psi) (2.31 ft/psi) or Head (Height of Water), ft = Pressure, psi 0.433 psi/ft				
Pressure, psi = Head, ft or Pressure, psi = (Head, ft) (0.433 psi/ft) 2.31 ft/psi				
<u>Pumps, Motors and Horsepower</u>				
Water Horsepower (WHp) = (Flow, gpm) (Head, ft) 3,960				
Brake Horsepower (BHp) = (Flow, gpm) (Head, ft) (3,960) (Pump Efficiency as decimal)				
Motor Horsepower (MHp) = (Flow, gpm) (Head, ft) (3,960) (Pump Efficiency as decimal) (Motor Efficiency as decimal)				
Pumping Rate, gpm = <u>Volume, gal</u> Time, min				

Total Dynamic Head, ft = Static Head, ft + Discharge Head, ft + Friction Loss, ft

Wire-to-Water Efficiency, % =	Water Horsepower, WHp	x 100%
whe-to-water Enciency, ⁷⁰ –	Power Input, (Brake Hp or Motor Hp)	X 100%
Wire-to-Water Efficiency, % =	(Flow, gpm) (Total Dynamic Head, ft)	— x 100%
whe-to-water Enciency, % –	(Voltage, volts) (Current, amps) (5.308)	

Kilowatt-hr/day = (Motor, Hp) (Motor Run Time, hr/day) (0.746 kW/Hp)

Static Head, ft = Suction lift, ft + Discharge head, ft

Softening Processes

Hardness

Total Hardness, mg/l as CaCO₃ = Calcium Hardness, mg/l as CaCO₃ + Magnesium Hardness, mg/l as CaCO₃

If alkalinity is <u>greater</u> than total hardness: Carbonate Hardness, mg/l as CaCO₃ = Total Hardness, mg/l as CaCO₃ and, Noncarbonate Hardness, mg/l as CaCO₃ = 0

If alkalinity is less than total hardness:

Carbonate Hardness, mg/l as $CaCO_3$ = Amount of total hardness up to the Total Alkalinity, mg/l as $CaCO_3$, or Noncarbonate Hardness, mg/l as $CaCO_3$ = Total Hardness, mg/l as $CaCO_3$ =

Lime / Soda Ash Softening

Note: If hydrated lime (Ca(OH)₂) is used instead of quicklime (CaO), substitute 74 for 56 in equations below.

Lime Feed, mg/L = $\frac{(A + B + C + D) (1.15)}{Purity of Lime, as a decimal}$

A = Carbon dioxide (CO ₂) in source water:	mg/I as CO ₂	x (56/44)
B = Bicarbonate alkalinity removed in softening:	source water, mg/l as CaCO ₃ – softened water, mg/l as CaCO ₃	x (56/100)
C = Hydroxide alkalinity in softener effluent:	mg/I as CaCO₃	x (56/100)
D = Magnesium removed in softening:	source water Mg ²⁺ , mg/l – softened water Mg ²⁺ , mg/l	x (56/24.3)

Excess Lime, mg/I = (A + B + C + D) (0.15)

Soda Ash, dosage to remove noncarbonated hardness:

Soda Ash (Na₂CO₃) Feed, mg/l = (Noncarbonate Hardness, mg/l as CaCO₃) (106/100)

Carbon Dioxide, dosage to recarbonate:

Total CO₂ Feed, mg/I = (excess lime, mg/I) (44/56) + (Mg²⁺ residual, mg/I) (44/58.3)

Lime Feeder Setting, lbs/day = (Flow, MGD) (Dose, mg/l) (8.34 lbs/gal)

Feed Rate, lbs/min = <u>Feeder Setting, lbs/day</u> 1,440 min/day

Ion Exchange Softening

Hardness, grains/gallon = (Hardness, mg/l) (1 grain/gallon) 17.1 mg/l				
Exchange Capacity, grains = (Media Volume, cu ft) (Removal Capacity, grains/cu ft)				
Water Treated, gal = Hardness Removed, grains/gallon				
Unit Operating Time, hrs = (Avg Daily Flow, gpm) (60 min/hr) (Total Flow, gpd) (Desired Finished Water Hardness, gpg)				
Bypass Flow, gpd = Source Water Hardness, gpg				
Bypass Water, gals = (Softener Capacity, gal) (Bypass Flow, gpd) Softener Flow, gpd				
Total Flow, gallons = Softener Capacity, gal + Bypass Water, gal				

Temperature Conversions

Degrees Celsius, °C = (°F - 32) (0.555) or	(°F - 32)
Degrees Cersius, C = (1 - 52)(0.555) 01	1.8

Degrees Fahrenheit, °F = (°C x 1.8) + 32

Turbidity

Removal Percentage, % = (Influent Turbidity - Effluent Turbidity) Influent Turbidity x 100%

Water Loss

Unaccounted For Water, % = (Water Produced, gals – Water Billed, gals) Water Produced, gals x 100%

Water Production

Gallons per Capita/Day = <u>Volume of Water Produced, gpd</u> Population Served

Water Treatment Plant % capacity

Capacity, % = Average Daily Flow, MGD Plant Design Capacity, MGD x 100%

Abbreviations:

cfs	Cubic feet per second	m	Meter
DO	Dissolved oxygen	mg	Milligrams
ft	Feet	mg/L	Milligrams per liter
fps	Feet per second	lbs	Pounds
GFD	Gallons per day per square foot	MGD	Million gallons per day
gm	Grams	mL	Milliliter
gpd	Gallons per day	ppb	Parts per billion
gpg	Grains per gallon	ppm	Parts per million
gpm	Gallons per minute	psi	Pounds per square inch
gph	Gallons per hour	Q	Flow
gr	Grains	SS	Settleable solids
hp	Horsepower	TTHM	Total trihalomethanes
in	Inch	TOC	Total organic carbon
kg	Kilogram	TSS	Total suspended solids
kW	Kilowatt	VS	Volatile solids
kWh	Kilowatt-hour	W	Watt