FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Wastewater Treatment Formulas/Conversion Table

12 in = 1 ft	27 cu. ft. = 1 cu. yd.	1,000 mg = 1 gm
3 ft = 1 yd	7.48 gal= 1 cu. ft.	1,000 gm = 1 kg
5,280 ft = 1 mi	8.34 lbs= 1 gal	1,000 ml = 1 liter
43,560 sq. ft.= 1 acre	62.4 lbs= 1 cu. ft.	454 gm = 1 lb.
43,560 cu. ft.= 1 acre-ft	2.31 ft water = 1 psi	10,000 mg/L = 1%
325,829 gal = 1 acre-ft	0.433 psi = 1 ft water	1 mg/l = 1ppm
60 sec = 1 min	1 Hp= 0.746 kW	1 kg = 2.2 lbs.
60 min = 1 hour	1 Hp = 33,000 ft lbs/min	1 MGD = 695 gpm
1,440 min = 1 day	1 kW = 1,000 W	1 MGD = 1.549 cfs

L = Length B = Base W = Width H = Height R = Radius D = Diameter π = 3.14

Activated Sludge

```
(Current Solids Inventory, lbs.) - (Desired Solids Inventory, lbs.)
Change, WAS Rate, MGD =
                                                       (WAS, mg/L) (8.34 lbs./gal)
                                              (Influent CBOD, mg/L) (Plant Flow, MGD) (8.34 lbs/gal)
Food to Microorganism Ratio (F/M) =
                                               (Aeration Tank Cap., MG) (MLVSS, mg/L) (8.34 lbs/gal)
                                                                Solids Inventory, lbs.
Mean Cell Residence Time (MCRT), days =
                                                     (Effluent Solids, lbs/day) + (WAS, lbs/day)
Solids Inventory, lbs. = (Aeration Tank Cap., MG) (MLSS, mg/L) (8.34 lbs/gal)
WAS, lbs/day = (Waste Sludge Flow, MGD) (Waste Conc., mg/L) (8.34 lbs/gal)
Effluent Solids, lbs/day = (Plant Flow, MGD) (Effluent TSS, mg/L) (8.34 lbs/gal)
WAS, lbs/day to Waste = \left(\frac{\text{Solids Inventory, lbs.}}{\text{Target MCRT, days}}\right) - Effluent Solids, lbs/day
                              WAS, lbs/day to Waste
WAS Flow Rate, MGD =
                             (WAS, mg/L) (8.34 lbs/gal)
                                         (Settleable Solids, ml) (Plant Flow, MGD)
Return Sludge (RAS) Rate, MGD =
                                            (1,000 ml/L) - (Settleable Solids, ml)
                           Solids Inventory, lbs
Sludge Age, days =
                        Inf. Solids Added, lbs/day
Sludge Volume Index (SVI), ml/g = \frac{30 \text{ minute settleability, ml}}{\text{MLSS, mg/L}} \times 1,000 \text{ mg/g}
```

Area, Circumference, and Volume

Area (A), sq. ft.

Circle, $A = \pi \times R^2$ or $A = 0.785 \times D^2$

Cylinder, (outside surface area): $A = [(2 \times 0.785 \times D^2) + (\pi \times D \times H)]$ or $[(2 \times \pi \times R^2) + (\pi \times D \times H)]$

Rectangle, $A = L \times W$

Circumference, linear ft.

Circle, ft = $\pi \times D$

Rectangle, $ft = (2 \times L) + (2 \times W)$

Volume (V), cu. ft.

Cylinder, $V = \pi x R^2 x H$ or $V = 0.785 x D^2 x H$

Rectangle, $V = L \times W \times H$

Average (Arithmetic Mean) = Sum of All Terms or Measurements

Number of Terms or Measurements

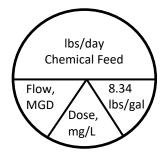
Annual Running Average = Sum of All Averages

Number of Averages

Chemical Feed

Chemical solution, lbs/gal = (solution, as a decimal) (8.34 lbs/gal)

Feed Pump Flow, gpd = Chemical Feed, lbs/day
Chemical Solution, lbs/gal


Feed Pump Stroke Setting, % = Desired Flow Rate, gpd

Maximum Feed Rate, gpd x 100%

Feed Rate

Feed Rate, lbs/day =

(Dosage, mg/L) (Flow, MGD) (8.34 lbs/gal) (Chemical Purity, as a decimal)

Using the Davidson Pie Chart

- <u>To find the quantity above the horizontal line:</u> Multiply the 3 pie wedges below the line together. Next, divide by the % purity as a decimal (i.e., 65% = 0.65).
- To solve for one of the pie wedges below the horizontal line: Divide the 2 bottom pie wedges into the quantity of lbs above the horizontal line. Next, multiply by the % purity as a decimal (i.e., 65% = 0.65).
- The given units must match the units shown in the pie wheel.

Detention Time

Disinfection

Chlorine Demand, mg/L = Chlorine Dosage, mg/L - Chlorine Residual, mg/L

Chlorine Dosage, mg/L = Chlorine Demand, mg/L + Chlorine Residual, mg/L

Chlorine Residual, mg/L = Chlorine Dosage, mg/L - Chlorine Demand, mg/L

Horsepower & Force

Motor Brake Horsepower (MHP) =
$$\frac{\text{(Flow, gpm) (Head, ft)}}{\text{(3,960) (Pump Efficiency as decimal) (Motor Efficiency as decimal)}}$$

Upward Force, lbs = (62.4 lbs/cu. ft.) (ground water height over tank bottom, ft) (tank bottom area, ft²)

Side Wall Force, lbs = (31.2 lbs/cu.ft.) (height, ft) (length, ft)

Motor Horsepower, Hp = $\frac{\text{(Power to electric motor, kW) (Motor efficiency as decimal)}}{0.746 \text{ kW/Hp}}$

Kilowatt, hrs/day = (Motor horsepower, Hp) (Motor run time, hrs/day) (0.746 Kw/Hp)

Energy Cost, \$/day = (Kilowatt, hrs/day) (Energy cost, \$/kWh)

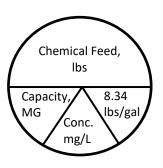
Total Dynamic Head, ft = Static head, ft + Friction losses, ft

Static Head, ft = Suction lift, ft + Discharge head, ft

Laboratory Procedures & Measurements

RDD = dried residue + dish + disc (filter), grams Tare weight (DD) = dish + disc (filter), grams FDD = fired residue + dish + disc (filter), grams 1 M = 1,000,000

Total Suspended Solids (TSS), mg/L =
$$\frac{\text{(RDD - Tare Weight)}}{\text{Sample volume, ml}} \times 1 \text{ M}$$


Volatile Suspended Solids (VSS), mg/L =
$$\frac{(RDD - FDD)}{Sample volume, ml} \times 1 M$$

MLVSS, mg/L = (MLSS, mg/L) (VSS % as decimal)

Parts per Million (ppm) & Pounds (lbs)

PPM (mg/L) =
$$\frac{\text{Pounds of Chemical}}{\text{(MG or MGD) (8.34 lbs/gal)}}$$

Lbs. = (Capacity, MG) (Concentration, mg/L) (8.34 lbs/gal)

Sedimentation & Loadings

Solids Loading Rate, lbs/day/ft² =
$$\frac{\text{Solids applied, lbs/day}}{\text{Surface area, ft}^2}$$

Efficiency, % =
$$\frac{(In - Out)}{In}$$
 x 100%

Hydraulic (Surface) Loading,
$$gpd/ft^2 = \frac{Flow Rate, gpd}{Surface area, ft^2}$$

Trickling Filter Organic Loading, lbs CBOD/day/1,000 ft
3
 = $\frac{\text{CBOD applied, lbs/day}}{\text{Media volume, as 1,000 ft}^3 \text{ units}}$

Sludge Digestion

Dry Solids, lbs = (Raw sludge, gal) (raw sludge, % solids) (8.34 lbs/gal)

Seed Sludge, lbs. volatile solids (VS) =

VS pumped, lbs VS/day

Loading factor, lbs VS/day/lb VS in digester

Seed Sludge, gal = Seed sludge, lbs volatile solids

(seed sludge, lbs/gal) (solids %, as decimal) (VS, as decimal)

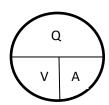
Lime Required, lbs. = (sludge volume, MG) (Volatile acids, mg/L) (8.34 lbs/gal)

Volatile Solids Reduction, % = $\frac{(In - Out)}{In - (In \times Out)}$ x 100 %

Volatile Solids Destroyed, lbs/day/ft³ = (VS added, lbs/day) (VS reduction, %) Digester volume, ft³

Gas Production, ft³/lb Volatile Solids = Gas produced, cu ft/day

VS destroyed, lbs/day


Temperature Conversions

Degrees Celsius, °C = (°F - 32) (0.555) or
$$\frac{(°F - 32)}{1.8}$$

Degrees Fahrenheit, $^{\circ}F = (^{\circ}C \times 1.8) + 32$

Velocities & Flow Rates

Velocity, fps =
$$\frac{\text{Flow Rate, cfs}}{\text{Area, sq ft}} \text{ or } \frac{\text{Distance, ft}}{\text{Time, seconds}}$$

Where: Q = flow rate, cfs V = velocity, fps A = area, ft²

Flow Rate, cfs = (Area, sq. ft.) (Velocity, ft/sec) or Q = V x A

Flow Rate, gpm = (Area, sq. ft.) (Velocity, ft/sec) (7.48 gal/cu ft) (60 sec/min) or Q = V x A x 7.48 x 60

Abbreviations:

BOD	Biochemical Oxygen Demand	mg	Milligrams
cfs	Cubic feet per second	mg/L	Milligrams per liter
CBOD	Carbonaceous Biochemical Oxygen Demand	MG	Million gallons
DO	Dissolved oxygen	MGD	Million gallons per day
ft	Feet	mL	Milliliter
fps	Feet per second	MLSS	Mixed liquor suspended solids
gm	Grams	MLVSS	Mixed liquor volatile suspended solids
gpd	Gallons per day	PPM	Parts per million
gpm	Gallons per minute	psi	Pounds per square inch
gph	Gallons per hour	Q	Flow
hp	Horsepower	RAS	Return Activated Sludge
in	Inch	SS	Settleable solids
kg	Kilogram	TSS	Total suspended solids
kW	Kilowatt	VS	Volatile solids
kWh	Kilowatt-hour	W	Watt
lbs	Pounds	WAS	Waste Activated Sludge
Lbs/day	Pounds per day		