Integrating genetic and demographic effects of dispersal on population response to a variable environment

Allison G. Dedrick

Dept. of Ecology, Evolution, and Natural Resources, Rutgers University

&

Marissa L. Baskett (presenting)

Dept. of Environmental Science and Policy, University of California Davis

Dispersal is a double-edged sword

- ↑ Local rescue:
- Demographic support
- Increase local diversity

Mobilized individuals & genes

 \rightarrow \uparrow response to climate change

- ↑ Cross-population variability:
 - Demographic synchrony
 - Genetic homogenization

What is the relative role of demographic versus
genetic dynamics in driving the effect of dispersal?
→ drivers of +/- roles in response to climate change

Lenormand 2002, Abbott 2011

Humans are altering dispersal

Habitat fragmentation

- ↑ Local rescue:
- Demographic support
- Increase local diversity ullet

Transport

- Dispersal Cross-population variability:
 - **Demographic synchrony**
 - Genetic homogenization

Including variability in returns for a natural resource

What is the relative role of demographic versus genetic dynamics in driving the effect of dispersal? human impacts on

Study system: salmon

Independent & diverse populations stabilize returns

Increased variability in California

Chinook (Oncorhynchus tshawytscha)

Weakened portfolio effect in a collapsed salmon

population complex

Sacramento Basin: 8/10 + pairwise correlations 4 significant

San Joaquin Basin: 6/6 + pairwise correlations 4 significant

Increased variability in California

Chinook (Oncorhynchus tshawytscha)

Weakened portfolio effect in a collapsed salmon

Salmon hatcheries

Salmon hatcheries: trucking

Satterthwaite & Carlson 2015.; Sturrock et al. 2019; Huber & Carlson 2015

Hatchery ·

Nimbus hatchery release sites

Salmon hatcheries: trucking

Hatchery

Satterthwaite & Carlson 2015.; Sturrock et al. 2019; Huber & Carlson 2015

Trucking increases dispersal between streams

CDFG/NMFS 2001; Hanak et al. 2011; Lindley et al. 2009

Central questions

- Can increased dispersal (through trucking) explain the increased variability in California's salmon?
 - What is the relative contribution of demographic synchrony versus genetic homogenization to increased variability?

Model

Trucking increases genetic similarity

Proportion of distance trucked

Dedrick & Baskett 2018, American Naturalist

Population size and variability increase w/trucking

Proportion of distance trucked

Dedrick & Baskett 2018, American Naturalist

Trade-off between population size and variability

Genetic homogenization outweighs demographic synchrony effects

Dedrick & Baskett 2018, American Naturalist

Conclusions

- Trucking can drive increased variability in salmon
 - Genetic homogenization >> demographic synchrony in driving increased variability

- For SOTM:
 - There can be a such thing as too much dispersal, especially:
 - a) Considering genetic differentiation across locations, &
 - b) If environmental variation increases with climate change

Acknowledgements

Co-author: Allison Dedrick

Project collaborators: Stephanie Carlson, Mike Springborn, Amanda Faig, Will Satterthwaite, Steve Lindley, Robin Waples

